

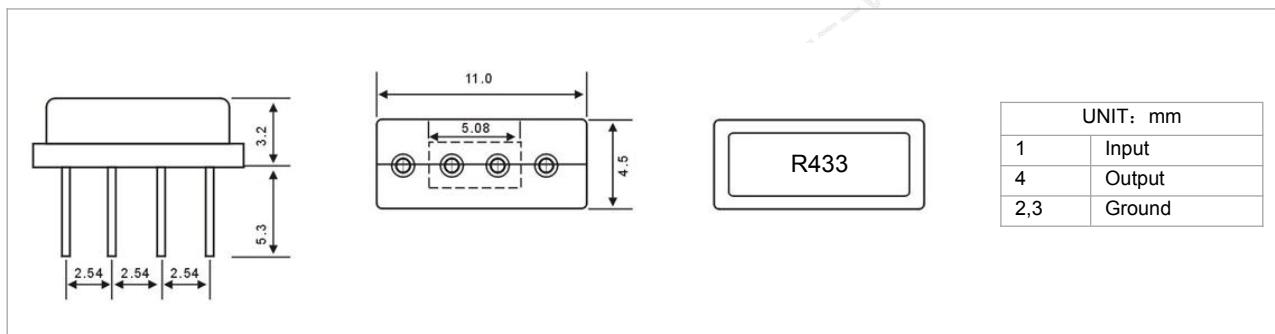
F11 Series

CHF11-R433.92M75K-NB

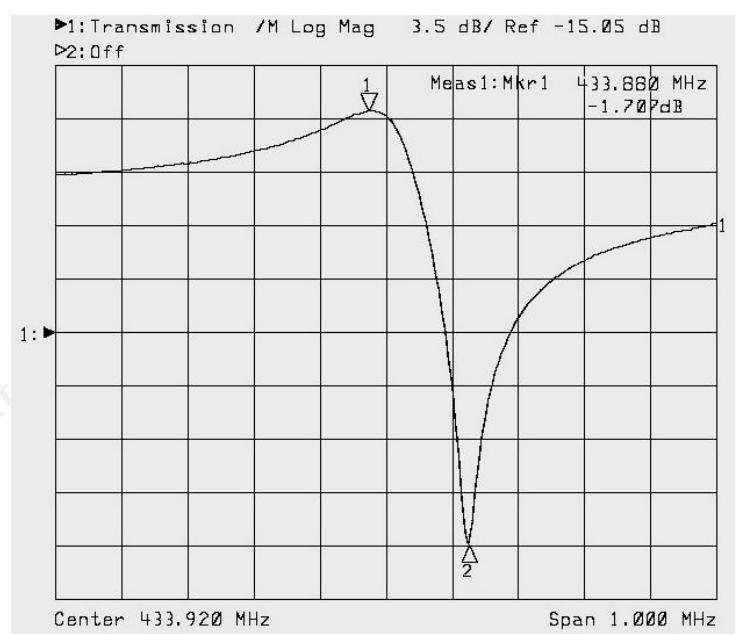
Pb Free RoHS Compliant
2002/95/EC

※ Application & Features

- RF, Wireless
- Automotive Equipment at Other
- 11.0×4.5×3.2mm Metal Package
- This specification shall cover the characteristics of 1-port SAW resonator with 433.920M used for remote-control security.

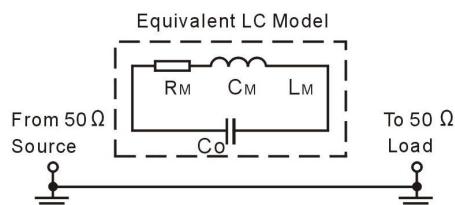

※ Maximum Rating

Rating	Value	Unit
CW RF power dissipation	P	dBm
DC voltage between any terminals	V_{DC}	V
Operating temperature range	T_A	°C
Storage temperature range	T_{stg}	°C

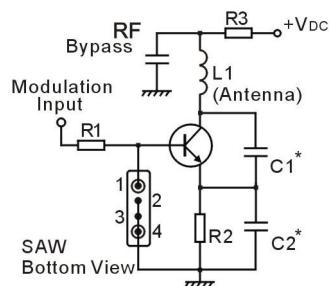

※ Electronic Characteristics

Characteristic	Sym	Minimum	Typical	Maximum	Unit
Center Frequency (+25°C)	f_C	433.845	433.920	433.995	MHz
	Δf_C		±75		kHz
Insertion Loss	IL		1.7	2.0	dB
Quality Factor	Q_U		10.371		
	Q_L	1000	1800		
Temperature Stability	T_0	25	40	55	°C
	f_0		$f_0 \pm 2.7$		kHz
Frequency Temperature Coefficient	FTC		0.032		ppm/°C ²
Frequency Aging	Absolute Value during the First Year	$ f_A $	≤ 10		ppm/yr
DC Insulation Resistance Between Any Two Terminals		1.0			MΩ
RF Equivalent RLC Model	Motional Resistance	R_M	21	26	Ω
	Motional Inductance	L_M	79.926		μH
	Motional Capacitance	C_M	1.6848		pF
	Shunt Static Capacitance	C_0	1.7	1.9	pF

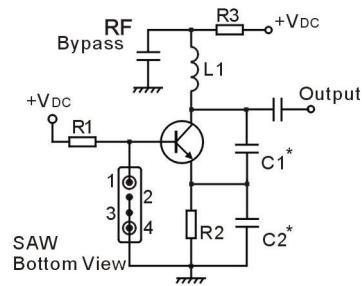
※ Mechanical Dimensions and Marking



※ Typical Frequency Response


※ Equivalent LC Model

※ Test Circuit



※ Typical Application Circuits

1) Low-Power Transmitter Application

2) Local Oscillator Application

※ Environment Characteristic

1 Thermal Shock:

The components shall remain within the electrical specifications after being kept at the condition of heat cycle conditions: $TA=-40^{\circ}\text{C}\pm3^{\circ}\text{C}$, $TB=85^{\circ}\text{C}\pm2^{\circ}\text{C}$, $t1=t2=30\text{min}$, switch time $\leq 3\text{min}$ & cycle time : 100 times, recovery time: $2\text{h}\pm0.5\text{h}$.

2 Resistance to solder heat

Submerge the device terminals into the solder bath at $260^{\circ}\text{C}\pm5^{\circ}\text{C}$ for $10\pm1\text{ sec}$. Then release the device into the room conditions for 4 hours. It shall meet the specifications in 2.2.

3 Solder ability

Submerge the device terminals into the solder bath at $245^{\circ}\text{C}\pm5^{\circ}\text{C}$ for 5s, More than 95% area of the soldering pad must be covered with new solder. It shall meet the specifications in 2.2

4 The Temperature Storage:

4.1 High Temperature Storage: The components shall remain within the electrical specifications after being kept at the $85^{\circ}\text{C}\pm2^{\circ}\text{C}$ for 500h, recovery time : $2\text{h}\pm0.5\text{h}$.

4.2 Low Temperature Storage: The components shall remain within the electrical specifications after being kept at the $-40^{\circ}\text{C}\pm3^{\circ}\text{C}$ for 500h, recovery time : $2\text{h}\pm0.5\text{h}$.

5 Humidity test:

The components shall remain within the electrical specifications after being kept at the condition of ambient temperature $60^{\circ}\text{C}\pm2^{\circ}\text{C}$, and 90~96% RH for 500h.

6 Mechanical shock

Drop the device randomly onto the concrete floor from the height of 1m for 3 times. The resonator shall fulfill the specifications in 2.2.

7 Vibration

Subject the device to the vibration for 2 hour each in X, Y and Z axes with the amplitude of 1.5 mm at 10 to 55 Hz. The resonator shall fulfill the specifications in 2.2.

※ Remark

1 Static voltage

Static voltage between signal load & ground may cause deterioration & destruction of the component. Please avoid static voltage.

2 Ultrasonic cleaning

Ultrasonic vibration may cause deterioration & destruction of the component. Please avoid ultrasonic cleaning

3 Soldering

Only leads of component may be soldered. Please avoid soldering another part of component.